Tuning the Magnetic Properties of Nanoparticles

نویسندگان

  • Arati G. Kolhatkar
  • Andrew C. Jamison
  • Dmitri Litvinov
  • Richard C. Willson
  • T. Randall Lee
چکیده

The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

An investigation on synthesis and magnetic properties of nanoparticles of Cobalt Ferrite coated with SiO2

SiO2-coated Cobalt Ferrite (CoFe2O4) nanoparticles were obtained by the hydrolysis of tetraethylorthosilicate in the presence of CoFe2O4 nanoparticles in co-precipitation. The effects of SiO2coating on the magnetic properties of CoFe2O4 nanoparticles were investigated. The structural, morphological and magne...

متن کامل

An investigation on synthesis and magnetic properties of nanoparticles of Cobalt Ferrite coated with SiO2

SiO2-coated Cobalt Ferrite (CoFe2O4) nanoparticles were obtained by the hydrolysis of tetraethylorthosilicate in the presence of CoFe2O4 nanoparticles in co-precipitation. The effects of SiO2coating on the magnetic properties of CoFe2O4 nanoparticles were investigated. The structural, morphological and magne...

متن کامل

Applying a suitable route for preparation Fe3O4 nanoparticles by Ammonia and investigation of their physical and different magnetic properties

Iron oxide nanoparticles were synthesized by coprecipitation method using ammonia as precipitation agent. Most researchers usually add ammonia into the iron salt solution but in this work the salt solution drop wise has been added to the ammonia and the new obtained results were compared with those of other researches. Magnetic properties of nanoparticles were measured by VSM. The effect of rea...

متن کامل

Magnetic Properties of Fe Oxide Nanoparticles Produced by Laser Pyrolysis for Biomedical Applications

Abstract. We report on the magnetic characterization of Fe oxide nanoparticles by laser pyrolysis and the relationship between the preparation conditions and the magnetic response. It is shown that controlling the preparation conditions during the pyrolisis allows tuning the nanoparticles morphology and structure and consequently the magnetic properties of the nanoparticles. The nanoparticles a...

متن کامل

COMPARATIVE MAGNETIC AND PHOTOCATALYTIC PROPERTIES OF COPRECIPITATED ZINC FERRITE NANOPARTICLES BEFORE AND AFTER CALCINATION

In this work, the effects of co-precipitation temperature and post calcination on the magnetic properties and photocatalytic activities of ZnFe2O4 nanoparticles were investigated. The structure, magnetic and optical properties of zinc ferrite nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetometry and UV–Vis spectrophotometry techniques.  The XRD re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013